Охлаждение микросхем: печатная плата и радиатор (часть 2) (страница 3)

для раздела Лаборатория
Влияние окружения компонента.

Возможно, площадь меди в верхнем слое, на который устанавливается компонент, сказывается на характеристиках охлаждения. Второй элемент, который может оказать влияние – количество припоя, используемого при монтаже.

В качестве нагревательного элемента будет использован транзистор в корпусе DPAK при мощности 2.5 Вт.

Проверка влияния медной зоны вокруг компонента (DPAK), температура кристалла:

Слой меди
вокруг микросхемы
Без обдува
3.5 В
5 В
7 В
12 В
Отсутствует
60.2
58
55.6
52.2
48.5
7 мм
54.7
52.7
51.1
49.6
47.8
7 мм + припой
51.4
49.2
48.7
47.9
46.5

реклама

350x400  3 KB

Интересно, что еще от 3 до 5 градусов можно выиграть, если просто нанести большее количество припоя вокруг металлической пластины компонента (вывод стока). Обычно же при монтаже компонентов не заботятся о теплопередаче через контактирующие поверхности, и это ошибка. Вокруг детали наибольшее сопротивление потерь и нанесение припоя может оказать реальную помощь.

Измерение качества передачи тепла по печатной плате.

До сих пор снимали градиент температур только для одного случая – без участия вентилятора. Но при искусственном охлаждении эффективность работы печатной платы должна упасть из-за сопротивления потерь передачи тепла вдоль платы. Повторим тест, но добавим работу вентилятора с очень маленькой и нормальной производительностью (3.5 и 7 вольт). Транзистор поменяем на D2PAK, для симуляции группы небольших транзисторов.

'Внт.' – температура кристалла, остальное снято с обратной стороны печатной платы, точка '0' под центром металлической пластина транзистора (D2PAK, 5 Вт).

Вентилятор
Внт.
0
2.5
5
7.5
10
12.5
15
17.5
20
22.5
25
27.5
30
0
66.2
38.7
38
37.1
35.7
34.3
32
30.4
26.3
25
24.2
23.5
20.9
19.7
3.5 В
53.9
28.2
27.9
27
25.5
24.1
22.9
20
16
15
14.2
13.3
11.3
9.7
7 В
47.7
22
21.8
21.5
20.2
19.2
18.1
16
12.2
11.5
10.7
10
8.2
7.2

В данных есть небольшие нарушения монотонности, что вызвано неоднородной печатной платой.

350x400  3 KB

Эффективная длина радиатора зависит от скорости обдува, если исходить из границы пятидесятипроцентного снижения, то рабочая длина составит:

  • Без обдува – 30 мм.
  • Низкая скорость обдува (вентилятор 3.5 В) – 22.5 мм.
  • Высокая скорость обдува (вентилятор 7 В) – 20 мм.

Прошу обратить внимание, измерения проводились от центра к периферийной части, поэтому общий размер длины получается в два раза больше.

Ориентация в пространстве и цвет печатной платы.

Печатная плата выполняет функцию радиатора и относительно успешно. Но для радиатора важна ориентация в пространстве и цвет его покрытия. Теплопередача может осуществляться за счет нагрева окружающего воздуха или посредством излучения. Если радиатор темного цвета, то эффективность передачи тепла излучением повышается, обещают улучшение отдачи до х1.7 раз. Может, стоит красить платы в черный цвет?

Тестовая установка простая – многослойная печатная плата 25х40 мм (10 см2 х2 стороны), в центре припаян транзистор в корпусе DPAK. Мощность та же, что и в других тестах с этим транзистором, 2.5 Вт.

Полученные данные сведены в таблицу:

Ориентация платы
Цвет радиатора
Температура транзистора,
градусов
Температура платы,
градусов
Температура обратной
стороны платы,
градусов
Горизонтально
Черный
60
51
44
Вертикально
Черный
58
50
45
Горизонтально
Светлый
73.8
64
57
Вертикально
Светлый
65
54
48

Неравномерность температуры в пределах стороны платы не превышает четырех градусов.

Изначально на печатной плате была защитная маска черного цвета. Для получения светлого цвета маска с обеих сторон удалялась. Теория говорит, что это должно было повлечь ухудшение эффективности в 1.7 раза, ведь передача тепла методом излучения уменьшилась во много раз. В реальности ухудшение работы составило всего лишь 25 процентов. Согласно теории, плоский радиатор лучше работает в вертикальном положении. Без маски это всего 18 процентов, а с маской едва ощутимо. Похоже, маска слишком толстая и мешает теплопередаче.

Средняя температура платы 50 градусов (температура обратной стороны не интересна), мощность 2.5 Вт, отсюда можно вычислить термосопротивление подобного 'радиатора' – 20 градусов на ватт при площади 10 см2. Или, при 200 см2 тепловое сопротивление 1 градус на ватт.

Ничего сверхнеобычного, специально перекрашивать плату в черный цвет точно не стоит. Но это объясняет любовь производителей к темным платам.

Тепловое сопротивление.

реклама



Для измерения теплового сопротивления потребуется много откалиброванного оборудования и материалов, что достаточно проблематично, поэтому просто измерим падение температуры на тестовом материале. В качестве генератора тепла возьмем транзистор в корпусе DPAK при мощности 2.5 Вт. Его активная поверхность отвода тепла примерно 5х5 мм.

250x150  2 KB

Тепловые потери измерялись как разность температур между точками 'A' и 'B'.

Контрольные точки выбраны не слишком удачно, но этот способ выдержан для снятия характеристик всех материалов. Тепловые потери на двух переходах сред и термопасты учитываются.

Особенности проведения измерений:

  • При измерении потерь в платах, нагревательный элемент к ним припаивался, а обратная сторона зачищалась от окислов и покрытий до чистой меди.
  • В корпусах BGA и TSOP выбиралось место без полупроводникового кристалла, с краю.
  • В качестве ’пластины из железа’ использовался небольшой фрагмент из конструкции системного блока.
  • Теплопроводящие прокладки сняты из аппаратуры, поэтому точные характеристики неизвестны. Красный из фирменного блока питания, серый – из обычного китайского 'noname'.

реклама

Результаты:

Материал
Толщина, мм
Температура, градусов
Приведено к 1 мм, градусов
Многослойная печатная плата
1.5
10.3
6.9
Двухсторонняя печатная плата
1.5
69.4
46.3
Корпус микросхемы BGA
0.76
18.8
24.7
Корпус микросхемы TSOP
0.98
31.7
32.3
Пластина из железа
0.6
4.2
7
Теплопроводящая прокладка (красная)
0.3
11.7
37.3
Теплопроводящая прокладка (серая)
0.37
16.9
45.7
Прокладка из керамики (белая)
0.64
4.9
7.6

Разница в температурах многослойной и обычной платы просто дикая. Понятно, что FR4 плохо проводит тепло, но чтоб тонкие прослойки меди были настолько эффективны…

Сама же теплопроводность корпусов не слишком хорошая, что вполне ожидаемо.

По термопрокладкам тоже не особо красивые цифры, но что есть, то есть. На их фоне керамика выглядит просто великолепно, но ее не удастся использовать в компьютерной технике – просто незачем. Назначение термопрокладок в выбирании различной высоты компонентов, а керамика жесткая и в этом вопросе не поможет. Какая именно была керамика в моем случае, сказать трудно. Судя по цвету и тепловому сопротивлению, это бериллиевая керамика.

реклама

Как использовать данные таблицы? Да очень просто – тепловое сопротивление железа известно, остальные цифры пересчитываются пропорционально.

Практическое применение

Для начала вы можете воспользоваться методикой расчета радиатора по материалу, опубликованному на сайте electrosad.ru (pdf, 186 Кб). Или можно вспомнить правило – ‘не грузи и не загрузим будешь’. На фабричные радиаторы есть технические характеристики, а с самодельными … можно применять упрощенные расчеты, ведь точные расчеты смысла не несут, очень уж много непредсказуемых параметров. Вы знаете тепловое сопротивление корпуса или печатной платы именно вашей системной платы? А ведь тепловая проводимость платы зависит, в том числе, и от трассировки ее внутренних слоев. При этом хорошо бы учесть, что с организацией обдува тоже подчас не всё хорошо.

Итак, упрощенный расчет. Если надо точнее, то, пожалуйста, воспользуйтесь приведенной выше ссылкой на методику, а по остальным вопросам – увы, только самостоятельные исследования и чтение документации по компонентам. К сожалению, 'общие' рекомендации слишком упрощены, местами дико.

Пункт 1 – тепловая мощность.

реклама

По преобразователям питания процессора все довольно просто, их КПД колеблется вокруг цифры 80%. При этом сразу следует учесть, что они проектируются на определенную мощность потребления и при превышении (или соразмерно) этой цифры КПД преобразования энергии начинает уменьшаться. Грубо говоря, стоит брать эффективность 82% для пониженной нагрузки, и 76% нормальной – для большой. Мощность потерь составит соответственно 22 и 32 процента от выходной мощности. Расчеты для низкой мощности производить труднее, даже при сильных упрощениях, ведь потери в компонентах преобразователя пропорциональны квадрату выходного тока.

Например, в материнской плате, рассчитанной на TDP 120 Вт, установлен процессор с потреблением 70 Вт. В данном случае нагрузка не является повышенной, ожидается предполагаемый КПД 82%. При этом от источника питания потребляется 70*100/82 = 85.4 Вт. Из этой цифры 70 Вт уходит в процессор, а 85.4-70 = 15.4 Вт рассеивается на элементах преобразователя.

Тот же случай, но с использованием более мощного (по потреблению) процессора с разгоном даст несколько иную картину. Если он потребляет 140 Вт (цифры условны), то предполагается снижение КПД преобразователя до 76%. Потери составят уже совсем другие цифры: 140*100/76 = 184.2 Вт от источника питания, или 184.2-140 = 44.2 Вт на элементы преобразователя.

Хочу сразу отметить, что далеко не все эти потери вызваны транзисторами. Что-то, и весьма большое, рассеивается на индуктивностях, трассировке и, немного - на конденсаторах. Как разделить полученную цифру на транзисторы и всех остальных? Всё очень сильно зависит от примененных компонентов. Скажем, две трети тепла рассеивается на транзисторах. Только не спрашивайте, откуда взялась цифра. А потолок надо побелить.

Итак, надо рассмотреть два варианта: 15.4х2/3 = 10 Вт и 44.2*2/3 = 29 Вт.

реклама

Пункт 2 – активная площадь поверхности печатной платы.

Давайте возьмем какую-нибудь материнскую плату и посмотрим, во что это выльется.

Например, Biostar TP67XE.

450x333  67 KB. Big one: 1500x1111  294 KB

В этой плате используются компоненты в корпусе LFPAK, эффективно отдающие тепло в печатную плату. Прекрасно, расчеты можно вести без особых усложнений. Если бы компоненты плохо отводили тепло в плату, то расчет эффективности рассеивания тепла был бы чрезвычайно сложен и проще сразу переходить к выбору дискретного радиатора, игнорируя теплорассеивающие свойства платы.

реклама

Вначале уберем те участки, которые не могут отводить тепло от преобразователя.

449x333  42 KB

Остается измерить оставшуюся поверхность. Если не учитывать зону нижнего левого края с надписью ‘BIOSTAR’, то получается два прямоугольника – верхний 55х120 мм и правый 45х85 мм.

Ранее рассматривалась эффективность отвода тепла печатной платой. Из полученных результатов выходило, что ширина более 60 мм не эффективна (поэтому игнорировали левую часть платы). В моем случае ширина 55 и 45 мм, что удовлетворяет условию без ограничений. В итоге получается площадь поверхности 55х120 + 45х85 = 104 см2.

Есть один нюанс, который портит общее впечатление. Дело в том, что на плате расположены и другие компоненты, кроме преобразователя, и они тоже подогревают печатную плату. Для порядка, стоит отметить, что эти компоненты выступают как небольшие радиаторы и тоже рассеивают тепло. На данной картинке присутствует разъем процессора, и он (точнее, процессор) тоже греется. Но несильно, термозащита процессора настроена на температуру порядка 60 градусов по верхней крышке. Что до нижней части процессора, то она ниже температуры крышки. К тому же, между дном процессора и печатной платой находится прослойка контактов, которые не особо хорошо передают тепло. Так что, тепловой подогрев от процессора можно не учитывать.

реклама

Пункт 3 – площадь и мощность на один транзистор.

В преобразователе десять фаз, в каждой по три транзистора. Понятно, что тепловые потери не распределяются равномерно по всем компонентам, но и расчеты примерны.

На один транзистор приходится 104/(10*3) = 3.5 см2 площади печатной платы. Мощность:
Первый вариант - 10/(10*3) = 0.33 Вт.
Второй вариант - 29/(10*3) = 0.97 Вт.

Извините, небольшое уточнение по методике. Ранее рассмотрены исследования при использовании достаточно больших участков печатной платы, которые во много раз превышают цифру 3.5 см2, полученную в этом расчете. Это означает, что предыдущее исследование было неверным? Отнюдь, посмотрите внимательнее на картинку, транзисторы собраны в группу и тепло рассеивается довольно протяженным участком платы (45 и 55 мм).

Пункт 4 – расчет радиатора.

Если дана мощность и перегрев, то можно вычислить требуемую площадь поверхности. Для этого надо решить, сколько будет закладываться на перегрев. В системном блоке обычной температурой считается 35 градусов, выше 50 градусов компонент воспринимается как горячий. Выходит, что на перегрев остается 50-35 = 15 градусов.

Прошу заметить, эти рассуждения затрагивают температуру радиатора (печатной платы), у кристалла температура окажется несколько выше.

Для начала, попробуем обойтись без принудительного обдува.

Площадь поверхности платы (вернее, одной стороны) уже рассчитали. Далее, эту цифру надо умножить на 1.5, ведь у платы две стороны. Почему не удвоить? Здесь два момента:

  • Во-первых, обратная сторона материнской платы рассеивает тепло не особо эффективно.
  • Во-вторых, сама печатная плата сделана не из чистой меди и из-за потерь работает не столь эффективно.

После вычисления эффективной поверхности (приведенной к идеальной пластинке), к ней можно применить упрошенную формулу расчета – поверхность 300 см2 нагревается на один градус при подведении мощности один ватт. Но можно обойтись еще более простым решением - ранее измеряли, для темной печатной платы (естественно многослойной) коэффициент 1 градус на ватт приходится на (одну сторону) поверхности 200 см2.

Для наихудшего случая, 0.97 Вт, необходимая площадь радиатора составит 0.97*200/15 = 13 см2.

Ну вот, настало время прослезиться. Если бы на плате под транзистор приходилось 13 см2, то ни о каком радиаторе задумываться не пришлось. А так… только 3.5 см2.

Если взять меньшую мощность (первому варианту требовалось только 0.33 Вт), то необходимая площадь радиатора составит 0.33*200/15 = 4.4 см2.

Гм. Если не использовать дополнительный радиатор, то первый вариант вполне работоспособен, только перегрев будет уже 19 градусов вместо 15. Не смертельно, температура самого транзистора выйдет 54 градуса. Что до второго случая, то отсутствие радиатора скажет весьма жестко – перегрев 56 градусов или температура 91 градус.

Понятно, почему производитель этой материнской платы установил на транзисторы радиатор. В первом приближении, для нормального функционирования преобразователя нужен радиатор 13 см2 * 30 = 390 см2, довольно большого размера. Попробую высказать безосновательное предположение, что установленный производителем радиатор обладает эффективной поверхностью гораздо меньше требуемой, а значит, возникнет потребность в дополнительном обдуве.

Выводы

Война - ерунда, главное маневры!

Выводы, вторая попытка.

Ммм …. Выводы что-то совсем не пишутся, может статью почитаете?

Почти все корпуса обладают пластиковым (керамическим) верхом, что затрудняет отвод тепла через него. Можно поставить радиатор и/или обдувать мощным воздушным потоком, но всё равно эффект останется посредственным. Ну, не предназначены они для этого, что ж тут поделать. Причем, дело не облегчает тот факт, что кристалл находится достаточно глубоко под поверхностью.

Если в корпусе применяется соединение выводов того вида, что рассмотрено в разделе TSOP, то материал корпуса должен быть выше на толщину выводов и небольшой запас над ними, для электрической изоляции. Если же выводы утоплены в глубь корпуса, находятся вокруг кристалла (смотреть картинку в разделе QFN), то все равно требуется ощутимый запас над кристаллом, ведь проволочки соединения кристалл–выводы немного поднимаются над пластиной полупроводника. Именно поэтому я отдельно не тестировал такую распространенную сборку, как drMOS – смысла нет. Это все тот же 'TSOP', по методу подключения силовых выводов (а значит, и толщины верхней крышки над кристаллом); и QFN, по методу отвода тепла в печатную плату.

И по отводу тепла через пластину в дне. Обычный корпус, без вставок, несколько поднят над платой и очень плохо отдает тепло через дно. Зазор оставлен не по чьей-то особой вредности, это требуется технологически – на печатной плате могут быть локальные дефекты (защитной маски, маркировки, рельефность многослойной платы), да и при формовке выводов и изготовлении корпуса существует разброс параметров.

Основная задача корпуса SMD – гарантировать надежное прилегание выводов, всех выводов, к контактным площадкам печатной платы. Отсюда и появляется зазор между корпусом и платой. Он небольшой, но теплоизоляционные свойства у него 'хорошие'. Если компонент выделяет много тепла, то может быть применена модифицированная редакция корпуса, с металлической пластинкой в дне. При этом полупроводниковый кристалл монтируется на эту пластину, иначе нет смысла городить огород. Решение хорошее, но почему оно не распространено? Если забыть про немного возросшую стоимость корпуса и затаривания кристалла, то остается весьма серьезная проблема – ‘металлическое’ дно мешает трассировке платы.

Нельзя просто так положить подобный корпус на плату, защитная маска не может гарантировать отсутствия замыкания. Даже если выкрутить руки технологам и поставить, то всё равно плохо – в современной электронике все цепи представляют собой линии, а у них есть вполне определенный импеданс. И поскольку металл дна находится прямо над проводниками, то импеданс будет изменен и не соответствовать расчетному. Если у цепи импеданс меняется на своем протяжении, то возникают частичные локальные отражения и форма сигнала искажается.

Поэтому, если используется корпус с металлом в дне, то соответствующую зону платы приходится изолировать от трассировки. Обычно если металл в дне есть, то он занимает значительную ее часть, что неизбежно сказывается на качестве трассировки цепей – банально меньше места. Поэтому хоть сами по себе вставки и полезны, но их не ставят по объективным причинам. Впрочем, стоит отметить – в микросхемах довольно часто устанавливают полупроводниковые кристаллы на теплораспределительные пластины, просто они не видны, будучи изолированы в корпусе. При этом улучшается отвод тепла, а внешне корпус выглядит традиционным.

К слову, я как-то смотрел микросхемы SDRAM в корпусе TSOP – в них использовался полупроводниковый кристалл огромного размера, во всё пространство корпуса. При этом кристалл был смонтирован на тонкой медной пластинке. Микросхемы памяти крайне чувствительны к локальному нагреву, поэтому введение пластинки весьма оправдано.


По результатам измерений накопились некоторые общие выводы, пора их собрать в одном месте.

Типы корпусов влияют на механизм охлаждения. Если в упаковке не предусмотрен отвод тепла в плату (TSOP, SOIC и аналогичные), то не следует рассчитывать на эффективный отвод тепла средствами печатной платы. В случае корпуса с развитой поверхностью можно возложить надежды на обдув. А иначе придется устанавливать дополнительный радиатор.

Термопрокладки есть зло, их вредоносная сущность четко отразилась в измерениях. В ряде корпусов введение этого элемента приводит к результату худшему, чем без радиатора вовсе. Увы, при применении группового радиатора, общего на несколько корпусов, без данного зла не обойтись – хоть немного, но корпуса отличаются по толщине, а термопрокладка призвана выбрать разницу. Часть корпусов просто обязывает применение термопрокладки, ведь у них металлический верх, у которого есть электрический контакт со схемой.

Локальные радиаторы лучше группового, ведь не требуют использования термопрокладки, но размеры и форма такого радиатора должна быть соответствующие – большой объем (точнее - поверхность), редкие и высокие иглы или ребра. Обычный размер компонента 5х5 … 10х10 мм, что затрудняет подбор достойного радиатора. Посмотрите результаты тестирования, радиаторы 10 см2 … 20 см2 не могут оказать существенного эффекта без принудительного обдува, а это уже весьма крупные конструкции.

Если компонент перегревается, то более эффективно применение обдува, чем установка радиатора. Причина тривиальна – большое тепловое сопротивление через верхнюю крышку. Корпуса просто не предназначены для отвода тепла через верх. Про упаковку DirectFET пока не будем вспоминать, поскольку она не особо распространена. А жаль.

Serj
Telegram-канал @overclockers_news - это удобный способ следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.
Страницы материала
Страница 3 из 3
Оценитe материал
рейтинг: 4.6 из 5
голосов: 51

Комментарии Правила



Возможно вас заинтересует

Популярные новости

Сейчас обсуждают