Новая SOC Nvidia Xavier NX лидер в тестах ИИ

для раздела Блоги
Начислено вознаграждение
Эта новость написана посетителем сайта, и за неё начислено вознаграждение.

   Nvidia отрапортовала об очередной победе в последнем наборе тестов MLPerf, опубликованном в среду. Производитель GPU сообщил, что он показал самые быстрые результаты в новых тестах MLPerf, которые измеряли производительность рабочих нагрузок AI в центрах обработки данных.

реклама

    Пять тестов вывода MLPerf, применяемые в четырех сценариях вывода, охватывали такие приложения ИИ, как классификация изображений и обнаружение объектов. Nvidia заняла верхние строчки во всех тестах для обоих сценариев, ориентированных на центры обработки данных (серверных и автономных), с ее графическими процессорами Turing. Между тем, SoC Xavier показала наивысшую производительность среди коммерчески доступных периферийных и мобильных SoC, представленных для MLPerf в однопоточных и многопоточных сценариях.

реклама

   «Современный искусственный интеллект действительно сложен», - заявил на этой неделе Пареш Харья, директор по маркетингу продуктов для бизнеса ускоренных вычислений Nvidia. «Разнообразие нейронных сетей, развертываемых сегодня, огромно, а их сложность также огромна. И по мере того, как мы переходим к более сложным и более интересным сценариям использования, таким как диалоговый ИИ, сложность этих моделей просто невероятно возрастает».

    MLPerf - это широкий набор тестов для измерения производительности программных платформ машинного обучения (таких как TensorFlow, PyTorch и MXNet), аппаратных платформ (включая Google TPU, процессоры Intel и графические процессоры Nvidia) и облачных платформ. Несколько компаний, а также исследователи из Гарварда, Стэнфорда и Калифорнийского университета в Беркли, впервые согласились поддержать данный тестовый пакет в прошлом году. Цель состоит в том, чтобы предоставить разработчикам информацию, которая поможет им оценить существующие предложения и сосредоточиться на будущем развитии.

реклама

   Что касается последнего теста, то Nvidia считает, что программируемость его платформы в широком диапазоне рабочих нагрузок ИИ обеспечивает его высокую производительность.

Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news - это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.

Комментарии Правила

Возможно вас заинтересует

Популярные новости

Популярные статьи

Сейчас обсуждают