В первом обзоре процессоров Sandy Bridge (Core i5-2400 и Core i7-2600) я несколько раз обращал внимание читателей, что исследование новых CPU является неполным без участия «самых-самых оверклокерских» моделей с индексом К.
На тот момент Sandy Bridge еще не был официально представлен и таких процессоров в России были считанные единицы, так что для редакции overclockers.ru стоило больших трудов достать сразу пару CPU на тестирование. Речи о том, чтобы еще и выбрать конкретные модели, вообще не шло. В завершении обзора я пообещал читателям вскоре раздобыть экземпляр с индексом «K». В силу обстоятельств и большой загрузки тестами новых ускорителей nVidia сделать это быстро не получилось.
Попробую исправиться, пусть и с опозданием
Так что данная заметка о разгоне не претендует на какую-то ультра-новизну и «открыть Америку» автор не пытается. Это скорее материал «вдогонку», где будут учтены не только данные, полученные при тестировании. Будет приведен ряд собственных соображений по поводу новых процессоров и сравнение Intel Core i5-2500 «лоб в лоб» с парой очень популярных и активно разгоняемых моделей предыдущего поколения. Надеюсь, что это станет полезным для читателей, подумывающих о переходе на новую платформу LGA1155.
Для начала - немного информации об архитектуре исследуемого процессора.
Читатели, хорошо осведомленные о положении процессоров Intel в модельной линейке нынешнего поколения (или просто читавшие мои предыдущие обзоры Sandy Bridge) могут просмотреть этот раздел «по диагонали». Здесь я повторю уже известные сведения для объяснения «общего расклада» и вкратце расскажу, чем же так интересен исследуемый процессор Intel Core i5-2500K.
Как известно, модельная линейка процессоров Intel архитектуры Sandy Bridge разделена на три семейства: Core i3/i5/i7. Такое деление выглядит очень привычно, поскольку применялось и в предыдущем поколении (Bloomfield/Lynnfield/Clarkdale/…). Процессоры Intel Core i3 представляют собой «урезанные» двухъядерные CPU. Поддержка Hyper Threading и прогрессивная архитектура позволяет им демонстрировать неплохую производительность.
Однако для нас, оверклокеров, такие процессоры не особенно интересны из-за крайне ограниченных разгонных способностей. Мне, например, удалось «раскочегарить» Core i3-2100 только до 3225 МГц, что, согласитесь, несерьезно даже для старых 65 нм CPU, не говоря уж о современном «холодном» двухъядернике.
Настоящий «бич» поколения Sandy Bridge – сочетание заблокированного множителя и слабого разгона «по шине». На Core i3 с заблокированным «намертво» множителем этот недостаток проявляется наиболее отчетливо, но от него страдают и CPU семейств Core i5/Core i7. Здесь ситуация немного лучше – поддержка технологии Turbo Boost (ее нет у i3) приводит к наличию «резерва по множителю». Несколько единиц CPU Ratio, зарезервированных под технологию авторазгона, могут быть задействованы и вручную. С учетом дополнительного небольшого разгона по BCLK это дает возможность увеличить частоту большинства четырехъядерных процессоров Sandy Bridge на 500-900 МГц.
По сути, такой разгон может проводиться только «ради чистого искусства» (например, оверклокинг «заблокированного» Core i7-2600 до 4070 МГц, предпринятый автором в первом обзоре). Прикладного значения в таких экспериментах немного, так как Intel выпустила для разгона две специализированные модели CPU. Их частотный потенциал намного выше, а разгон не связан с такими неудобствами.
Я говорю о моделях Core i7-2600К и Core i5-2500K с разблокированным множителем. Если у большинства CPU Sandy Bridge максимальное значение множителя лежит в пределах 35-38 единиц (с учетом «резерва» Turbo Boost), то на этих моделях его можно увеличить до 57 единиц (а в некоторых случаях даже до 59, но с обязательным снижением частоты тактового генератора). Номинальная частота системной шины для всех процессоров Intel нынешнего поколения составляет 100 МГц. Путем нехитрого умножения (100 х 57) можно определить, что максимальная частота удачных моделей с индексом «K» может доходить до 5700 МГц даже без разгона системной шины.
Есть еще одно обстоятельство, которое лично мне очень нравится. Intel не стала «приделывать» к названию этих CPU слово Extreme и продавать потом по $1000 за штуку (так было с «разблокированными» моделями в предыдущих поколениях). Стоимость Intel Core i7-2600K составляет $317 (здесь и далее: для партии из 1000 штук – стандарт производителя), при этом цена обычного Intel Core i7-2600 - $294. Получается, за возможность разгона надо доплатить всего $23, что не так уж и много, учитывая какой рост частоты можно получить. Такая же ситуация и с Core i5-2500К, который стоит $216, тогда как обычный 2500-й тянет на $205.
Итак, существуют только две модели, пригодные для серьезного разгона, и разница по цене между ними составляет добрую сотню долларов. За что же берут эти деньги? Ключевое отличие процессоров Intel Core i5 и Intel Core i7 – поддержка Hyper Thrеading. Core i7-2600K способен одновременно обрабатывать до восьми потоков. Вкупе с высокой удельной производительностью архитектуры и возможностью достижения высокой рабочей частоты этот процессор может оказаться настоящим «чемпионом» в многопоточных расчетах.
Core i5-2500 умеет считать только в четыре потока, поскольку не поддерживает HT. Так ли это плохо? На мой взгляд, в данный момент и на ближайший год - это не критично. Игры и «софт» сейчас успешно освоили многоядерные процессоры. Ситуация тут не в пример лучше, чем всего год-полтора назад. Однако работать более чем с четырьмя потоками пока умеют только немногочисленные приложения и единичные игры. Четыре «физических» ядра 2500K – это вполне достаточное количество для современных игр, заметный проигрыш может наблюдаться только при профессиональном использовании компьютера: рендеринге, работе с графическими редакторами или сложными программами проектирования и «обсчета» различных конструкций.
Есть еще одно небольшое отличие Core i5 и i7 – это объем cache-памяти третьего уровня. У старших CPU он составляет 8 Мбайт, у младших – только 6 Мбайт. Мои собственные тестирования и эксперименты коллег убедительно доказывают, что это преимущество дает реальный эффект далеко не во всех случаях, а там, где он есть, наблюдается разница в считанные проценты. Да и вообще, Intel Sandy Bridge – сущая «числодробилка», а уж в разгоне до 4,5+ ГГц... в общем, 2 Мбайта cache L3 погоды не делают.
В общем и целом, Core i5-2500K представляется мне более выгодной покупкой по соотношению цена/качество, особенно если бюджет на системный блок не достигает «космических» значений. Лишнюю сотню долларов разумнее потратить на более мощную видеокарту.
Я надеюсь, что мне удалось ввести читателей в общий курс дела, так что самое время переходить к тестированию.
Процессор Intel Core i5-2500K тестировался в составе следующего тестового стенда:
Процессор Intel Core i7-930 тестировался в составе следующего тестового стенда:
Процессор Intel Core i7-870 тестировался в составе следующего тестового стенда:
Программное обеспечение:
Для прогрева процессора и выявления стабильных частот использовался тест Linpack в оболочке Linx версии 0.6.4. Для «прикидочных» тестов объем используемой оперативной памяти равнялся 2048 Мбайт, количество прогонов теста – 10. Для более точной проверки системы на стабильность дополнительно применялся «усиленный режим»: объем используемой памяти 2560 Мбайт, 20 прогонов теста. Температура процессора отслеживалась при помощи утилиты Real Temp версии 3.55. Утилита CPU-z 1.56 применялась для снятия скриншотов, демонстрирующих режим работы системы.
Для тестирования производительности процессоров применялись следующие программы и синтетические тесты:
Для тестирования игровой производительности применялись следующие приложения:
Учитывая специфику тестирования процессоров, использовались разрешения 1920 x 1200 и 1280 х 1024 точек (во втором случае влияние производительности процессора на результат должно быть выражено более ярко). Вертикальная синхронизация была отключена. Для удобства восприятия я буду приводить подробные настройки каждой игры после соответствующего графика.
Основой тестового стенда стала материнская плата ASUS P8P67 Pro. Сразу скажу, что это очень интересный и добротный продукт, на данный момент готовится его подробный обзор. У данной платы много интересных «фишек», но я пока не буду раскрывать все карты, а скажу лишь, что система питания была настроена таким образом, чтобы обеспечивать максимально точное соответствие напряжения питания CPU, которое выставлено в BIOS, реальному (без просадок и завышений).
Процессор Intel Core i5-2500K разгонялся с увеличением множителя. На первом этапе тестов я решил не экспериментировать с частотой системной шины, так как уже не раз подчеркивалось, что Sandy Bridge таким способом можно разогнать только на несколько процентов.
В качестве стартового напряжения было выбрано значение 1,15 В. Назову это «холодным разгоном», когда температура процессора даже в тяжелых тестах не слишком высока. Подобный вариант может быть интересен «фанатам тишины», использующим низкооборотные вентиляторы, или просто обладателям не очень производительных кулеров, которые могут перекочевать на LGA1155 c предшествующей платформы LGA1156. В общем – пока обойдусь без «экстрима».
На пробу был выставлен множитель CPU, равный 40 единицам. В этом случае можно получить «ровную» частоту 4000 МГц, которая еще совсем недавно была своеобразным «стандартом» разгона. Сможет ли процессор работать в тестах на 4 ГГц при таком низком напряжении? Удивительно, но да! Вот скриншот предварительной проверки 10 прогонами Linpack c объемом задачи 2048 Мбайт.
После этого были проведены и другие тесты, но температура не превысила значений, представленных на скриншоте. Как говорится, снимаю шляпу: 4000 МГц, 1,15 В и 49 градусов по самому горячему ядру в Linpack. Отмечаю, что температура самого холодного ядра составила всего 43-градуса: такое может произойти из-за чуть другого расположения датчика, неравномерного прилегания кристалла к обратной стороне крышки или просто ее кривизны. Если вести понятие «усредненная температура ядер», то получится результат на уровне 46 градусов.
В стенде используется один из лучших процессорных радиаторов современности – Noctua NH-D14, да еще и с высокоскоростными вентиляторами Scythe Slip Stream (~1700 об/мин во время теста), и все равно температурные данные по-хорошему удивляют. Заменой термопасты (по старинке задействовалась КПТ-8) можно «срезать» еще несколько градусов.
В дальнейшем выяснилось, что с множителем 40 единиц я попал в точку. При следующем значении 41 (CPU - 4100 МГц) было невозможно даже загрузить операционную систему. Отмечу, что протестированный ранее процессор Intel Core i7-2600 также мог работать на частоте 4070 МГц при напряжении менее 1,2 В. Следовательно, подобные результаты достижимы для многих Sandy Bridge.
На таком разгоне останавливаться, разумеется, рано, ведь подобных частот может достичь и обычный Sandy Bridge без индекса «K» в случае удачного разгона по шине. Пользователь, переплачивающий за «разблокированную» модель, явно рассчитывает на большее.
Попробую увеличивать напряжение шажками по 0,1 В. Итак, 1,25 В – тоже совсем не «страшное» значение, при котором 45 нм Bloomfield или Lynnfield только начинают «просыпаться», часто не достигая отметки 4000 МГц.
Какое же значение множителя выбрать. Хорошо, обнаглею и выставлю 45 – вдруг «заведется»? – Завелось! Удалось загрузить операционную систему, но при попытке запуска любого теста происходил вылет в «синий экран». Любопытно, а если чуть меньше, например – 44?
Полет нормальный. Причем нет даже намека на нестабильность, я несколько раз прогнал Linpack, в том числе с увеличенным объемом задачи и парочку многопоточных тестов, активно нагружающих все ядра процессора.
Температура самого горячего ядра выросла на 9 градусов (до 58), усредненная температура ядер составила ~55 градусов. Хм, опять упомяну процессоры предыдущего поколения – вы можете представить себе Core i7-930 на частоте 4400 МГц, демонстрирующий такие температуры (это, если вообще повезет, и такая частота будет достигнута «на воздухе»)? Вот и я не могу. Ради интереса были снижены обороты вертушек до 950 об/мин (тот уровень, когда «субъективное ухо» перестает улавливать их шум) – система оставалась стабильной, хотя ядра CPU в Linpack прогрелись на 12-14 градусов сильнее.
Следующий шаг – напряжение 1,35 В. Это уже серьезное значение, тут не лишним будет предпринять дополнительные меры для успешного разгона. В частности я зафиксировал все «второстепенные» напряжения с небольшим превышением номинального значения. По умолчанию на плате ASUS все они стоят в положении «Auto», но кто его знает, что может «учудить» материнка.
Использовались следующие значения напряжений:
Читатели, уже знакомые с разгоном Sandy Bridge, могут отметить, что значительно повышено только напряжение CPU PLL (считается, что это может увеличить разгонный потенциал процессора). Остальные напряжения (System Agent, IO и южный мост) были подняты совсем чуть-чуть – скорее по привычке, чем для реальной пользы.
При напряжении 1,35 В я начал разгон с установки множителя CPU равного 46 единицам. Никаких проблем со стабильностью на частоте процессора 4600 МГц выявлено не было. Следующий шаг – 4700 МГц, ситуация повторилась. Еще больше? Ок, множитель 48, частота 4800 МГц – стабильно!
На этом значении процессор наконец-то «наелся», попытки выставить 49 единиц CPU Ratio приводили к зависанию еще до начала загрузки операционной системы.
Температура самого горячего ядра достигла значения 70 градусов по Цельсию. Это уже больше похоже на привычные цифры, получаемые при разгоне старых 45 нм процессоров. При этом отмечаю, что самое холодное ядро нагрелось всего до 62 градусов, а усредненная температура составила ~66 градусов. По-прежнему возможно «убрать» обороты вентиляторов до комфортного значения 1050-1150 об/мин, система остается стабильной, ядра прогреваются на 9-15 градусов сильнее.
Кстати, не стоит забывать, что я говорю о температуре в Linpack, показатели в других тестах (даже многопоточных) ниже на десяток и более градусов.
Логическим завершением тестирования стала проверка разгонного потенциала CPU при напряжении 1,4 В. В интернете упорно ходят слухи, что превышение этого порога со временем неминуемо приводит к деградации процессора. Это означает, что CPU начинает «терять» частоту: снижается максимально достижимое значение, а для получения тех же цифр, что раньше, приходится выставлять большее напряжение.
Тут есть сразу несколько вопросов и сомнительных моментов. Каков механизм деградации? На всех ли процессорах она проявляется при одном и том же напряжении? Связана ли деградация с температурным режимом? Связана ли она с «удачностью» того или иного экземпляра процессора, и, если да, то как? Точных ответов на эти вопросы никто не знает, вот и приходится прикрываться фиговым листком «1,4 В - максимум».
Кстати, а почему 1,4? Почему не 1,38 или 1,41? И почему на новых 32 нм процессорах этот порог максимального напряжения остался тем же, что и на 45 нм Bloomfield/Lynnfield? Техпроцесс ведь стал тоньше, рабочие напряжения снизились, а «заколдованное» напряжение так и осталось на своем месте. В общем, все это смахивает на сказку-страшилку. Да, я верю, что процессоры могут деградировать – такие случаи есть, но вот в «порог 1,4 В» поверить мне трудновато. Хотя для самых бережливых и боязливых оверклокеров я бы вообще рекомендовал снизить максимальное значение напряжения Sandy Bridge до ~1,35 В из-за 32 нм техпроцесса (это, по крайней мере, выглядит логично).
Тем более, что толку от последнего «шажка» 1,35 -> 1,4 В оказалось совсем немного. Если при более низких значениях процессор уверенно набирал частоту от шага к шагу, то тут прирост составил всего 100 МГц.
Вот, собственно и «упор». Причем не только по частоте, но и по температуре. Самое горячее ядро прогрелось до 75 градусов. Большинство процессорных радиаторов значительно уступают Noctua NH-D14 с высокооборотными вентиляторами, так что используя их (да еще и в комфортном по шуму режиме) в этом тесте можно легко уйти далеко за 80 градусов. В общем, напряжение 1,4 В еще является для Sandy Bridge рабочим, но тут уже нужно как следует подходить к подбору кулера. Меньшие значения (1,3-1,35 В) тоже позволяют достигать приличных частот, но гораздо менее требовательны в этом плане.
Далее автор предпринял ряд экспериментов для преодоления частоты 4900 МГц при том же напряжении. Для начала, частота BCLK была поднята на 1 МГц. Вкупе с высоким множителем (49 единиц), это должно дать результат на уровне 4950 МГц. Система оказалась нестабильна, хотя и могла загрузить операционную систему.
Зайдем с другого бока. Что если попробовать понизить множитель, но «добить» итоговую частоту шиной? Выставив CPU Ratio равным 47, я задал частоту BCLK 105 МГц (для платы ASUS это значение не является максимальным). Одновременно был понижен множитель оперативной памяти, чтобы модули не оказались переразогнанными. Процессор смог работать в тестах на частоте 4935 МГц, но следующий шаг по шине до 106 МГц опять вывел систему из состояния стабильности.
В целом, самый обычный разгон по множителю оказался намного проще и эффективнее. Задействуя шину, постоянно получаешь нестандартные значения частоты оперативной памяти, что приводит к неудобствам. Кроме того, разгон по шине может привести к увеличению частоты контроллера памяти, шины PCI и остального – их множители заблокированы и не поддаются регулировке. Неизвестно, как это отразится на работе системы в целом.
Данные собраны, теперь необходимо понять, получен ли такой разгон из-за исключительной удачности процессора или он является типичным.
В новостной ленте overclockers.ru несколько раз публиковались заметки о достижении очередного мирового рекорда разгона Sandy Bridge с приведением статистики собранной HWBot. Рекордными являются значения 5700-5850 МГц, полученные на исключительно удачных отборных процессорах, которые могут работать при множителе 56-57. Таких CPU единицы, плюс для достижения рекордов применяется очень высокое напряжение. А вот результатов на уровне 5300-5400 МГц очень много, это тоже удачные процессоры, но их процент не в пример выше.
Можно определить и нижнюю границу. Согласно сообщениям на форуме, даже самые неудачные экземпляры 2500K/2600K берут частоты порядка 4400 МГц. При этом владельцы таких процессоров, как правило, и не стараются получить больше, ограничиваясь небольшим повышением напряжения. В разделе сайта «статистика разгона процессоров» есть только два результата разгона «разблокированных» процессоров. Один результат - 4700 МГц для повседневного использования, другой – 5000 МГц для расчетов Folding@Home.
Принимая во внимание еще ряд данных, почерпнутых на заграничных форумах, вырисовывается следующая общая картина. Если отмести уж совсем неудачные экземпляры, которые попадаются так же «часто» как и рекордные, то покупатель Sandy Bridge «K» может рассчитывать как минимум на достижение частоты 4400-4500 МГц. Такие результаты наблюдаются при использовании не самых эффективных систем воздушного охлаждения и при напряжениях, не превышающих 1,325-1,35 В. Более «смелый» оверклокер, располагающий хорошим производительным кулером, может рассчитывать на дополнительные 100-200 МГц.
При чуть большем везении приобретенный процессор может «взять» и 5 ГГц в режиме, пригодном для повседневного использования. Такие результаты тоже нередки. В общем, я ошибусь максимум на сотню МГц, если обозначу частотный потенциал «случайного» Sandy Bridge как 4600-5000 МГц. Можно отметить, что это выше, чем в предыдущем поколении: 45 нм процессоры традиционно «гонялись» в пределах 4100-4400 МГц «на воздухе».
Таким образом, протестированный процессор вряд ли является выдающимся по своим характеристикам: в условиях хорошего теплоотвода и с повышением напряжения до 1,4 В такие частоты могут продемонстрировать многие Sandy Bridge. Если говорить максимально осторожно, данный CPU можно назвать только «не неудачным», в том плане, что он хорошо реагирует на поднятие напряжения и не «упирается» в частоту раньше времени.
Ах да, чуть не забыл. Я никак не мог позволить себе остановиться в 50 МГц от заветной цифры 5 ГГц и не попробовать достичь данной отметки. Помимо улучшения личного рекорда по разгону на воздухе, это позволит понять, остался ли у процессора «запас», или он окончательно «уперся» в множитель. Вуаля:
При напряжении 1,49 В удалось снять скриншот на частоте 5200 МГц. Возможно, при дальнейшем увеличении «вольтажа» реально было добиться и стабильности системы в тестах. Я отказался от этой затеи, опасаясь той самой деградации, а при указанном напряжении система зависала в самом простом тесте Super-Pi. В любом случае, такой результат недоступен даже отборным CPU предыдущего поколения.
В данном случае это не основной раздел материала, для меня были более интересны разгонные способности Intel Core i5-2500K, поэтому им было уделено повышенное внимание. Тестирование производительности идет «в довесок» и будет не столь подробным, как при первом знакомстве с Sandy Bridge. Более того, в этот раз не совсем обычными будут состав участников и сама концепция теста.
Соперников у Core i5-2500K только два, зато очень грозных. За все модели 45 нм процессоров Intel будут отдуваться Intel Core i7-930 на ядре Bloomfield и Intel Core i7-870 на ядре Lynfield.
Оба процессора разогнаны до 4200 МГц, частота задана как 200 х 21 (BCLK x CPU Ratio). Этот уровень разгона является для четырехъядерников предыдущего поколения очень типичным. В начале до такой частоты «ходили» на воздухе немногочисленные удачные экземпляры Core i7-920, с переходом на степпинг D0 и появлением новой доступной модели Intel Core i7-930 ситуация улучшилась. Разгон до 4 ГГц стал считаться посредственным «средненьким» результатом, большинство процессоров уверенно «пробивали» на воздухе отметку 4100 МГц, более удачные – даже 4300-4400 МГц. Подчеркну, что речь идет о режимах, пригодных для повседневного использования, а не пятиминутных «выжимках» на завышенном напряжении, только чтобы снять скриншот или прогнать бенчмарк.
При этом, даже удачные «камни» были очень требовательны к эффективности системы охлаждения, в этом плане 32 нм Sandy Bridge очевидно стали большим шагом вперед. Как показали мои опыты выше, для достижения таких же частот (4000-4200 МГц) им требуется очень незначительное повышение напряжения, а уровень тепловыделения в этом случае невысок – с ним могут справиться и недорогие радиаторы простой конструкции.
Итак, бой будут вести «не неудачный» Intel-2500K и «приличные» Intel Core i7-930 и Intel Core i7-870. В активе у первого - прогрессивная архитектура с высокой удельной производительностью и высокая частота, недостижимая для конкурентов. 45 нм «камни» могут похвастаться поддержкой Hyper Threading, что должно дать им хорошую фору в многопоточных тестах. Да и вообще, Bloomfield/Lynnfield, разогнанные до 4200 МГц совершенно не выглядят «мальчиками для битья». Это должно быть интересно – поехали!
Первым на очереди будет тест Super Pi, надо же дать Core i5-2500K возможность «оторваться» в однопоточном режиме, да и поставить рекорд не помешает.
Результаты получились именно такими, как и ожидалось. Новые процессоры очень хорошо справляются с этой задачей, а с учетом высокой рабочей частоты результат вышел просто «космический».
Следующий тест – такая же «синтетика», но очень хорошо оптимизированная под многопоточность.
Ох уж этот Hyper Threading и восемь виртуальных ядер! И все равно, Sandy Bridge почти смог дотянуться до результатов «восьмипоточного» Lynnfield.
Еще один тест, который прекрасно работает с большим количеством потоков, - арифметическая проверка в SISoft Sandra.
Ситуация проясняется – Sandy Bridge «считает» значительно быстрее обоих 45 нм процессоров в четырехпоточном режиме. После активации HT Lynnfield показывает приблизительно такой же результат, а Bloomfield даже чуть уходит вперед. Расклад понятен – при работе с 1-4 потоками (большинство повседневных задач) новый процессор однозначно будет в выигрыше, при работе с 5-8 потоками старые процессоры могут получить преимущество, но не такое большое.
Еще один интересный тест на скорость криптографических операций. Core i5-2500K демонстрирует подавляющее превосходство из-за поддержки расширенного набора инструкций AES-NI. Это слабое место 45 нм моделей Intel, а вот в 32 нм Core i7 Extreme (Gulftown, который вышел на рынок значительно раньше исследуемого процессора) оно уже было ликвидировано, так что Sandy тут вряд ли сможет тягаться с шестиядерным «топом».
Тест PCMark Vantage хорошо отражает быстродействие процессоров в прикладных повседневных задачах (интернет-серфинг, простая обработка фото, офисные приложения). Конечно, нет никаких сомнений, что любой из исследуемых процессоров играючи справится с подобной нагрузкой. Интереснее оценить расклад сил при этом.
От Hyper Threading здесь нет толку, а значит «раскочегаренный» Core i5-2500K - вне конкуренции!
Проводить тесты в новейшем 3DMark11 я не стал: там все упирается в стендовую видеокарту, которой явно не хватает производительности. А вот на результаты более старых «марков» посмотреть стоит.
В Vantage Sandy Bridge побеждает. Обратите внимание, что сократить отставание старым процессорам удается исключительно из-за Hyper Threading.
Более наглядные результаты получаются в «рафинированном» CPU-тесте.
Здесь ситуация обратная: новинка проиграла обоим «ветеранам». Хотя сама возможность равной борьбы «четырехпоточного» и «восьмипоточных» CPU уже дорогого стоит.
И последний снятый показатель – рейтинг видеокарты. Здесь для Core i5-2500K ситуация более радужная: он сумел куда лучше, чем соперники, «прокачать» Radeon HD 5870, даже не смотря на то, что FPS в тестах отнюдь не зашкаливает за сотню, и ускоритель предельно загружен работой.
Первый тест скорости рендеринга сцены приносит Sandy Bridge неожиданную победу. Неожиданную, потому что Cinebench великолепно умеет работать с большим количеством потоков и польза от Hyper Threading здесь несомненна. Разогнанный до 4400 МГц шестиядерный Gulftown, работающий в 12 (!) потоков, выбивает в этом тесте около 11 баллов, так что «четырехпоточный» Sandy Bridge, показавший почти 8 баллов, выступает очень достойно даже в сравнении с этим монстром.
А вот и первый реальный прикладной тест.
Безумная скорость рендеринга меня сильно озадачила. Я многократно перепроверял и изменял настройки и даже пересобрал стенд с Core i7-930 ради уточнения данных. Все верно, но почему так получается, объяснить не берусь, ведь даже аналогичный исследуемому процессору Core i7-2600 показывает куда более «вменяемые» результаты, совсем чуть-чуть превосходя равночастотный Bloomfield. Предлагаю списать это на какие-то программные аномалии, например, ошибочное выставление «легких» настроек рендера.
В Photoshop такая ситуация к счастью не повторилась.
Hyper Threading тут улучшает результаты 45 нм процессоров очень незначительно, так что Sandy Bridge легко удается вырваться вперед.
Первый тест на скорость кодировки видео, довольно популярный среди «бенчеров».
Тут Hyper Threading интересно влияет на результат, просаживая максимальное значение, но повышая минимальное. Разогнанный Sandy Bridge эти «личные трудности» 45 нм процессоров совершенно не заботят, он легко превосходит оба.
Во втором тесте скорости кодировки выигрыш Core i5-2500K совсем невелик, что довольно странно, учитывая бесполезность Hyper Threading для Bloomfield и Lynnfield.
Архиватор сегодня будет только один, зато самый «оптимизированный».
Алгоритм архивации LZMA2 отлично распараллеливается, что обеспечивает довольно высокую эффективность HT в этом тесте. Впрочем, «скорострельный» Core i5-2500K опять умудрился справиться с расчетами быстрее всех.
Распаковка архива – однопоточная операция, лидер очевиден.
Вкратце пробегусь по играм. Для начала специально представлены результаты в совершенно непоказательной игре.
Использованы следующие настройки:
Даже в Crysis, где влияние CPU на результат минимально, Sandy умудряется чуть-чуть обойти старые процессоры. Впрочем, я хотел показать обратное: в тех режимах, где видеокарта загружена по полной и еле-еле обеспечивает «играбельность», толку от мощного процессора практически нет.
А вот обратный случай, Resident Evil 5 ну очень любит лишние МГц.
Использованы следующие настройки:
В этой уникальной по «процессорозависимости» игре Core i5-2500K наконец-то смог выступить «на все деньги», превзойдя оба 45 нм CPU.
Еще одна игра, которую принято считать жадной до ресурсов центрального процессора.
Использованы следующие настройки:
Тут разницу можно заметить только в меньшем разрешении, да и то она невелика.
Использованы следующие настройки:
В Dragon Age применение нового процессора приводит к более существенному росту результатов.
Использованы следующие настройки:
ВНЕЗАПНО! Откровенный «слив» в Mass Effect 2. Причем, на обычных Core i5-2400 и Core i7-2600 я такого результата не наблюдал. Видимо дело в драйверах или какой-то системной ошибке.
Использованы следующие настройки:
В гоночной игре по Формуле-1 все в полном порядке. Sandy может обеспечить чуть лучший результат, чем 45 нм процессоры, и преимущество составляет больше, чем 1-2 FPS, как в некоторых других играх. Но если брать в общем – толку от этого немного.
Подведу промежуточные итоги тестирования производительности.
В тех случаях, когда задача выполняется в 1-2-3-4 потока, преимущество Intel Core i5-2500K неоспоримо. Но и в многопоточных тестах этот процессор благодаря разгону ни разу не ударил в грязь лицом. Обратите внимание, даже в тех тестах, где «восьмипоточные» процессоры выступают в максимально выгодных условиях, Core i5 часто выходит победителем. Причем победа достигается с небольшим запасом; то есть даже менее удачные экземпляры данного CPU, которые смогут «взять» только 4600-4700 МГц будут работать на равных с процессорами предыдущего поколения, усиленными Hyper Threading.
Общие выводы будут разделены на два «блока».
Первый. Выводы по разгонному потенциалу исследованного CPU.
Второй. Выводы по производительности разогнанного Intel Core i5-2500K и области его применения.