Платим блогерам
Блоги
amv212
Найденное решение позволяет сделать полеты в космос более эффективными и безопасными.

реклама

Материалы для космических аппаратов должны обладать не только отличными летными характеристиками, но и выдерживать высокие нагрузки и экстремальные температуры. Недавно подобный материал был разработан учеными Исследовательского центра NASA имени Гленна.

Новый  сплав GRX-810 создан с помощью 3D-печати в рамках проекта Transformational Tools and Technologies (TTT), который осуществляется Управлением исследовательских миссий НАСА по аэронавтике (ARMD). (Проект TTT участвует в разработке многих других высокотехнологичных вычислительных и экспериментальных технологий для NASA).

реклама

Image credits: Rolled Alloys Specialty Metal Supplier/Pexels

Создание сплава GRX-810

GRX-810 был разработан из усиленного оксидной дисперсией (ODS) сплава, который обычно используется в высокотемпературных установках, таких как турбины и теплообменные трубы. Благодаря наличию ODS, GRX-810 может выдерживать температуры свыше 1 090 градусов Цельсия (2 000 градусов по Фаренгейту). Используя метод 3D-печати, исследователям удалось равномерно распределить наноразмерные частицы оксидов ODS по всему объему материала.

По данным космического агентства, по сравнению с существующими материалами, новый сплав GRX-810 обладает в два раза большей прочностью на излом и в 1000 раз большей износостойкостью при работе в условиях высоких температур, что обеспечивает не только большую надежность, но и меньший расход топлива и меньшие затраты на техническое обслуживание. Более того, при дальнейшем тестировании  GRX-810 было обнаружен, что он обладает в три с половиной раза большей гибкостью в отличие от сплавов, используемых NASA в настоящее время. Используя метод 3D-печати, исследователям удалось равномерно распределить наноразмерные частицы оксидов ODS по всему объему материала.

Если разрабатывать материалы, подобные GRX-810, традиционными методами, то на это могут уйти годы кропотливой работы методом проб и ошибок. Поэтому в дополнение к 3D-печати исследователи использовали термодинамическое моделирование - вычислительный инструмент, который позволяет ученым быстро (в течение недель или в крайнем случае месяцев) и с гораздо меньшими затратами предсказать оптимальный состав того или иного сплава.

"Применение этих двух процессов (3D-печати и термодинамического моделирования) позволило существенно ускорить темпы разработки наших материалов. Теперь мы можем производить новые сплавы с лучшими характеристиками и гораздо быстрее, чем раньше", - говорит Тим Смит, научный сотрудник по исследованию материалов в NASA.

3D-печатная камера сгорания турбокомпрессора - одна из деталей реактивного двигателя, для изготовления которых может быть использован сплав GRX-810. Image Credits: NASA

Необычайные возможности сплава GRX-810

Помимо того, что GRX-810 способен выдерживать экстремальные температуры, он более прочен, пластичен и гибок, чем материалы, используемые NASA в настоящее время. Кроме того, несмотря на двукратную прочность и впечатляющую износостойкость, новый материал сравнительно экономичен и легок, что в целом приводит к повышению КПД двигателя.

"Этот прорыв является революционным в области разработки материалов. А поскольку главная цель NASA - изменить будущее полетов, новые типы более прочных и легких материалов играют очень важную роль. Ранее увеличение прочности обычно снижало способность материала растягиваться и изгибаться, вот именно по этой причине наш новый сплав является уникальным", - сказал Дейл Хопкинс, заместитель руководителя проекта TTT.

Создание GRX-810 - важный шаг на пути к устойчивым полетам, поскольку он дает возможность летать на более совершенных и безопасных летательных аппаратах при более низких эксплуатационных расходах. Поэтому не удивляйтесь, если в ближайшем будущем GRX-810 изменит индустрию авиационной и космической промышленности.

10
Показать комментарии (10)

Популярные новости

Сейчас обсуждают